当真实数据有限,收集昂贵或由于隐私问题而无法使用时,合成表格数据生成至关重要。但是,生成高质量的合成数据具有挑战性。已经提出了几种基于概率,统计和生成的对抗网络(GAN)方法,用于合成表格数据生成。一旦生成,评估合成数据的质量就非常具有挑战性。文献中已经使用了一些传统指标,但缺乏共同,健壮和单一指标。这使得很难正确比较不同合成表格数据生成方法的有效性。在本文中,我们提出了一种新的通用度量,tabsyndex,以对合成数据进行强有力的评估。 TABSYNDEX通过不同的组件分数评估合成数据与实际数据的相似性,这些分量分数评估了“高质量”合成数据所需的特征。作为单个评分度量,TABSYNDEX也可以用来观察和评估基于神经网络的方法的训练。这将有助于获得更早的见解。此外,我们提出了几种基线模型,用于与现有生成模型对拟议评估度量的比较分析。
translated by 谷歌翻译
有条件的随机测试(CRTS)评估了一个变量$ x $是否可以预测另一个变量$ y $,因为观察到了协变量$ z $。 CRT需要拟合大量的预测模型,这通常在计算上是棘手的。降低CRT成本的现有解决方案通常将数据集分为火车和测试部分,或者依靠启发式方法进行互动,这两者都会导致权力损失。我们提出了脱钩的独立性测试(饮食),该算法通过利用边际独立性统计数据来测试条件独立关系来避免这两个问题。饮食测试两个随机变量的边际独立性:$ f(x \ hid z)$和$ f(y \ mid z)$,其中$ f(\ cdot \ mid z)$是有条件的累积分配功能(CDF)。这些变量称为“信息残差”。我们为饮食提供足够的条件,以实现有限的样本类型误差控制和大于1型错误率的功率。然后,我们证明,在使用信息残差之间的相互信息作为测试统计数据时,饮食会产生最强大的有条件测试。最后,我们显示出比几个合成和真实基准测试的其他可处理的CRT的饮食能力更高。
translated by 谷歌翻译
在这项工作中,我们证明了多种语的大规模序列到序列(SEQ2SEQ)模型,该模型是通过Denoising和因果语言建模(CLM)任务的混合物进行训练的,比仅解码器模型更有效地进行了效率的学习者在各种任务上。特别是,我们培训了一个名为Alexa教师模型(Alexatm 20b)的200亿个参数多语言SEQ2SEQ模型,并表明它在1-Shot摘要任务上实现了最先进的(SOTA)性能,超过了更大的540B PALM DOPODER模型。 Alexatm 20b还可以在1-Shot Machine翻译中实现SOTA,尤其是对于低资源语言,几乎所有语言对(阿拉伯语,英语,法语,德语,德语,印地语,意大利语,日语,以及flores-101数据集上的泰卢固语)。我们还显示了零拍设置,AlexATM 20B在SuperGlue和SqueadV2数据集上的表现优于GPT3(175B),并在XNLI,XCOPA,PAWS-X和XWINOGRAD等多语言任务上提供SOTA性能。总体而言,我们的结果为SEQ2SEQ模型提供了一个令人信服的案例,作为大型语言模型(LLM)培训的仅解码器模型的强大替代方法。
translated by 谷歌翻译
我们提出了可推广的NERF变压器(GNT),这是一种纯粹的,统一的基于变压器的体系结构,可以从源视图中有效地重建神经辐射场(NERF)。与NERF上的先前作品不同,通过颠倒手工渲染方程来优化人均隐式表示,GNT通过封装两个基于变压器的阶段来实现可概括的神经场景表示和渲染。 GNT的第一阶段,称为View Transformer,利用多视图几何形状作为基于注意力的场景表示的电感偏差,并通过在相邻视图上从异性线中汇总信息来预测与坐标对齐的特征。 GNT的第二阶段,名为Ray Transformer,通过Ray Marching呈现新视图,并使用注意机制直接解码采样点特征的序列。我们的实验表明,当在单个场景上进行优化时,GNT可以在不明确渲染公式的情况下成功重建NERF,甚至由于可学习的射线渲染器,在复杂的场景上甚至将PSNR提高了〜1.3db。当在各种场景中接受培训时,GNT转移到前面的LLFF数据集(LPIPS〜20%,SSIM〜25%$)和合成搅拌器数据集(LPIPS〜20%,SSIM 〜25%$)时,GNN会始终达到最先进的性能4%)。此外,我们表明可以从学习的注意图中推断出深度和遮挡,这意味着纯粹的注意机制能够学习一个物理地面渲染过程。所有这些结果使我们更接近将变形金刚作为“通用建模工具”甚至用于图形的诱人希望。请参阅我们的项目页面以获取视频结果:https://vita-group.github.io/gnt/。
translated by 谷歌翻译
我们介绍了一个大规模实验,该实验对编码器进行了预处理,其参数计数范围从700m到9.3b不等,随后蒸馏到较小的型号中,范围为17m-170亿参数,其应用到自然语言理解(NLU)组件(NLU)组件(虚拟助手系统。尽管我们使用70%的口语数据训练,但在对书面形式的跨语性自然语言推论(XNLI)语料库进行评估时,我们的教师模型与XLM-R和MT5相当。我们使用系统中的内域数据对教师模型进行了第二阶段的训练,以提高了3.86%的相对分类,而相对7.01%的插槽填充。我们发现,即使是从我们的2阶段教师模型中提取的170亿参数模型,与仅接受公共数据的2.3B参数老师相比,与2.3B参数老师相比,意图分类更好2.88%,并且7.69%的插槽填充错误率更好(第1阶段),强调了。内域数据对训练的重要性。当使用标记的NLU数据进行离线评估时,我们的17m参数阶段2蒸馏模型的表现分别优于XLM-R碱基(85m Params)和Distillbert(42m Params),分别优于4.23%至6.14%。最后,我们介绍了一个完整的虚拟助手实验平台的结果,在该平台中,我们发现使用经过预训练和蒸馏管道训练的模型超过了从8500万参数教师蒸馏的模型,在自动测量全系统用户不满的自动测量中,从8500万参数教师蒸馏出3.74%-4.91%。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
识别有影响力的培训示例的能力使我们能够调试培训数据并解释模型行为。现有的技术是基于通过模型参数来影响训练数据影响的。对于NLP应用中的大型模型,在所有模型参数中研究此流程通常是不可行的,因此技术通常选择重量的最后一层。但是,我们观察到,由于激活连接到最后一层的权重包含``共享逻辑'',因此通过最后一层权重计算的数据容易``取消效应'',其中不同示例的数据影响不同的示例的数据影响彼此相矛盾的大级级。取消效应降低了影响评分的歧视力,并且根据此措施删除有影响力的例子通常不会太多改变模型的行为。为了减轻这种情况,我们提出了一种称为Tracin的技术,我们可以修改一种称为Tracin的方法,可以在嵌入层而不是最后一层中进行操作,在该层中,取消效果不太严重。一个潜在的问题是,基于单词嵌入层的影响可能无法编码足够的高级信息。但是,我们发现梯度(与嵌入不同)不会遭受这一影响,这可能是因为它们通过较高的层链。我们表明,在三个语言分类任务上,在案例删除评估上,Tracin-We明显优于4-10在上一层上应用的其他数据影响的其他数据影响方法。此外,Tracin-We不仅可以在整体培训输入水平上产生分数,而且还可以在培训输入中的单词水平上产生分数,这是进一步的调试。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
We study the problem of attributing the prediction of a deep network to its input features, a problem previously studied by several other works. We identify two fundamental axioms-Sensitivity and Implementation Invariance that attribution methods ought to satisfy. We show that they are not satisfied by most known attribution methods, which we consider to be a fundamental weakness of those methods. We use the axioms to guide the design of a new attribution method called Integrated Gradients. Our method requires no modification to the original network and is extremely simple to implement; it just needs a few calls to the standard gradient operator. We apply this method to a couple of image models, a couple of text models and a chemistry model, demonstrating its ability to debug networks, to extract rules from a network, and to enable users to engage with models better.
translated by 谷歌翻译